One-step thermal synthesis of binary manganese iron cyclotetraphosphate $MnFeP₄O₁₂$

Banjong Boonchom *•* Naratip Vittayakorn

Received: 3 August 2009 / Accepted: 30 November 2009 / Published online: 11 December 2009 Springer Science+Business Media, LLC 2009

Abstract The manganese iron cyclotetraphosphate (Mn $FeP₄O₁₂$) was synthesized through one-step thermal synthesis at $700 \degree C$ using the mixing of manganese and iron metals and phosphoric acid in the presence of water– acetone media. Both FTIR and XRD results indicate the cyclotetraphosphate $(P_4O_{12}^{4-})$ structure and a pure monoclinic phase with space group $C2/c$ ($Z = 4$). The morphology and crystallite size for the $MnFeP₄O₁₂$ obtained from SEM data and X-ray line broadening show non-uniform particles and 30 \pm 9 nm, respectively. The magnetic study of the synthesized MnFe P_4O_{12} shows superparamagnetic behavior, which is important for specific application. Some physical properties of the synthesized $MnFeP₄O₁₂$ powder presented for the first time are comparable with those from individual $M_2P_4O_{12}$ (M = Mn and Fe) and a binary metal compound as $CoFeP₄O₁₂$.

Introduction

The metal(II) phosphates have considerable industrial interesting properties such as ceramics, catalysts, fluorescent materials, dielectrics, metal surface treatment agents, detergents, food additives, fuel cell materials, pigment, etc. [\[1](#page-3-0)[–4](#page-4-0)]. Metal cyclotetraphosphates $M_2P_4O_{12}$ and binary

King Mongkut's Institute of Technology Ladkrabang,

Chumphon Campus, 17/1 M. 6 Pha Thiew District, Chumphon 86160, Thailand

e-mail: kbbanjon@kmitl.ac.th

B. Boonchom · N. Vittayakorn

metal cyclotetraphosphates $M_{2-x}A_xP_4O_{12}$ (M and A = Mg, Ca, Mn, Co, Ni, Zn, or Cu; $0 < x < 2$), are isostructural, were examined for potential applications as special inorganic pigments [\[5](#page-4-0), [6](#page-4-0)]. All these compounds have similar X-ray diffraction patterns and close unit cell parameters, which crystallize in monoclinic space group $C2/c$ (Z = 4) [[7\]](#page-4-0). They were first described by Trojan et al. [\[6](#page-4-0), [8](#page-4-0), [9](#page-4-0)] and prepared by mixing starting materials, followed by calcination, crushing, and adjusting their color [\[9–11](#page-4-0)]. Many methods have been employed to synthesize single or binary metal cyclotetraphosphate, including twostep thermal method [[6,](#page-4-0) [8](#page-4-0), [9](#page-4-0)], hydrothermal synthesis [\[5](#page-4-0)], and the condensation of binary metal(II) dihydrogenphosphate hydrates $(M_{1-v}A_v(H_2PO_4)_2 \cdot nH_2O$ where $0 < y < 1$; $1 < n < 4$) [\[12](#page-4-0), [13](#page-4-0)]. In our previous work, the MnFeP₄O₁₂ prepared by the calcinations of $Mn_{0.5}Fe_{0.5}(H_2PO_4)_2 \cdot nH_2O$ at 500 $^{\circ}$ C uses several processes [[12\]](#page-4-0). These previously reported methods were long time consuming $(>5 h)$ with high temperature $(800-1000 \degree C)$ and were the evolved toxic gases $(NO₂$ and $CO₂)$. These works are of interest because it appears economically advantageous and environmentally friendly to substitute a portion of the divalent metal with a less costly divalent element, which influences many properties, for example, the color of pigments, thermally and chemically stable compounds [[6](#page-4-0), [8\]](#page-4-0), anticorrosion ability, and luminescence [\[8](#page-4-0), [9](#page-4-0), [14,](#page-4-0) [15\]](#page-4-0). However, it is relevant to synthesize binary cyclotetraphosphate and its solid solution because changing the metal ratio influences its useful properties.

Herein, we report for the first time the synthesis of a binary manganese iron cyclotetraphosphate, $MnFeP₄O₁₂$ by one-step thermal synthesis using solid state route of manganese and iron metals and phosphoric acid in water– acetone medium. This method is a simple, rapid, costeffective, and environmental friendly route for synthesis of

B. Boonchom (\boxtimes)

Advanced Materials Science Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

 $MnFeP₄O₁₂$, exhibiting the differences of some physical and chemical properties from those in our previously report [\[12](#page-4-0), [16,](#page-4-0) [17](#page-4-0)]. The synthesized sample was characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and a vibrating sample magnetometer (VSM) techniques.

Experimental

Reagent and apparatus

The starting reagents are Mn, Fe, H_3PO_4 , and acetone. All chemicals were of p.a. quality (Merck). As metal sources we use crystalline Mn and Fe metals since they display: (i) a moderate stability at storage (with respect to bond oxidation to Fe(II) and Mn(II) and dehydration, which ensures an exact stoichiometry in the final product; (ii) appearance of reducing gaseous products $(H_2, H_2O, CO, or CO_2)$ during the calcination process. The manganese and iron contents of $MnFeP₄O₁₂$ were determined by dissolving in 0.0126 M hydrochloric acid using atomic absorption spectrophotometry (AAS, Perkin Elmer, Analyst100). The phosphorus content was determined by colorimetric analysis. The room temperature FTIR spectrum was recorded in the range of 4000–370 cm^{-1} with 8 scans on a Perkin-Elmer Spectrum GX FT-IR/FT-Raman spectrometer with the resolution of 4 cm^{-1} using KBr pellets (KBr, spectroscopy grade, Merck). The structure and crystallite size of the product were studied by X-ray powder diffraction using a X-ray diffractometer (Phillips PW3040, The Netherlands) with Cu K α radiation ($\lambda = 0.15406$ nm). The Scherrer method was used to evaluate the crystallite size [\[18](#page-4-0)]. The morphology of the product was examined with scanning electron microscope using LEO SEM VP1450 after gold coating. The magnetic study of the product was examined at room temperature $(20 °C)$ using a vibrating sample magnetometer (VSM 7403, Lake Shore, USA).

Preparation of manganese iron cyclotetraphosphate $MnFeP₄O₁₂$

Typical procedure, 0.5494 g of Mn (c), 0.5584 g of Fe (c), and 10 mL acetone were put in a beaker with mechanical stirring. The mixture was added by 5 mL of 70% H_3PO_4 $(86.4\% \text{ w/w H}_3PO_4 \text{ dissolved in DI water})$ with continuous stirring at ambient temperature (10 min). The reactant mixture was transferred to a crucible, which was heated in the furnace at 700 \degree C for 2 h in an air atmosphere. The obtained pale gray powder was crushed and washed repeatedly with water until no PO_4^{3-} was detected in filtrate. Then, the powder was washed again for several times

with methanol and dried at room temperature. The reaction equation can be expressed as:

$$
Mn(s) + Fe(s) + 4H_3PO_4(aq)
$$

\nAcetone, 700°C in air atmosphere
\n
$$
MnFeP_4O_{12}(s) + 4H_2O(g)
$$

\n
$$
+ 2H_2(g)
$$
\n(1)

Results and discussion

Chemical analysis of $MnFeP₄O₁₂$

The chemical compositions of the synthesized $MnFeP₄O₁₂$ were analyzed according to the discussed methods. The data showed that manganese, iron, and phosphorus mass percentages were 14.55, 14.30, and 31.92 wt%, respectively. In other words, mole ratio of Mn:Fe:P in the synthetic product is equal to 1.03:1.00:4.02. This indicates that the general formula would be $MnFeP₄O₁₂$.

XRD analysis of $MnFeP₄O₁₂$

Figure 1 shows the XRD pattern of the product $MnFeP_4O_{12}$ obtained at 700 °C. The higher intensities of XRD peaks observed indicate crystallization as well as particle sizes of the product. On the basis of isostructural, XRD patterns of the individual $M_2P_4O_{12}$ (when $M = Mn$ and Fe) and the binary $M_{1-x}A_xP_4O_{12}$ are quite similar due to the electric charges of cations are equivalent, and the radii of cations are close to each other. Consequently, we can draw a conclusion that the synthesized MnFe P_4O_{12} is solid solution and not a mixture of the individual ones. All the detectable peaks in the figure are found to be in agreement with monoclinic phase, space group $C2/c$ ($Z = 4$) from PDF card 380314 for $Mn_2P_4O_{12}$ and PDF card 782285 for

Fig. 1 XRD pattern of $MnFeP₄O₁₂$

Compounds	Systems	a(A)	b(A)	c(A)	β (°)	Average crystallite size (nm)
$Mn_2P_4O_{12}$	PDF no 380314	11.88	8.588	10.137	119.21	
	Ref. $[16]$	11.784(0)	8.913(4)	10.055(6)	119.95(3)	29 ± 9
MnFeP ₄ O ₁₂	This work	12.02(0)	8.23(0)	10.57(0)	118.89(2)	30 ± 9
	Ref. [12]	12.02(8)	8.42(2)	10.10(4)	119.11(5)	69 ± 21
$Fe2P4O12$	PDF no.782285	11.94	8.37	9.93	118.74	
	Ref. [17]	12.80(0)	8.80(4)	10.56(0)	118.67(4)	29 ± 6

Table 1 Average particle size and lattice parameters of $MnFeP₄O₁₂$ calculated from XRD data

 $Fe₂P₄O₁₂$ and the XRD pattern of the prepared sample is in agreement with that of $MnFeP₄O₁₂$, obtained by the thermal transformation of $Mn_{0.5}Fe_{0.5}(H_2PO_4)_2 \cdot nH_2O$ at 500 °C. According to the Scherrer formula: $D = 0.89\lambda$ β cos θ), where D is crystallite diameter, $\lambda = 0.15406$ nm (the wavelength of X-ray radiation), θ is the diffraction angle, and β is the full width at half maximum (FWHM) [\[18](#page-4-0)]. The crystallite size of the product are estimated from the strong peaks below 40° fro 2θ . The resulting crystallite size of the product is 30 ± 9 nm. The lattice parameters determined from the XRD spectra are very close to the standard data file (from PDF no. 380314 for $Mn_2P_4O_{12}$ and PDF no. 782285 for $Fe₂P₄O₁₂$ and MnFeP₄O₁₂ reported in the literature (Table 1) [[12,](#page-4-0) [16](#page-4-0), [17](#page-4-0)].

FT-IR spectroscopic analysis of MnFe P_4O_{12}

The FTIR spectrum of the product $MnFeP₄O₁₂$ is seen in Fig. 2. The crystal structure is a three-dimensional framework of MO_6 (M = Mn or Fe) polyhedral linked with P_4O_{12} rings by M–O–P. The vibrational modes of $P_4O_{12}^{4-}$ ion observed in the frequency range of $370-1400$ cm⁻¹ are

assigned according to the literature [[16,](#page-4-0) [17,](#page-4-0) [19\]](#page-4-0). The strong band at 1226 cm^{-1} is due to the asymmetric stretching frequency of the PO_2^{2-} radical, while the bands at 1100– 100 cm^{-1} to the symmetric stretching frequencies of the PO_2^{2-} radical. The bending modes are expected in the area 600–400 cm⁻¹ (PO₂²⁻ radical) and 400–370 cm⁻¹ (P-O-P bridge). The metal–O stretching usually appears in the bending mode region as the bending modes of the P–O–P bridge and absorption bands associated with these vibrations are usually very weak. One strong band at 970 cm^{-1} is assigned to the asymmetric of the P–O–P bridge. Three bands between 800 and 700 cm^{-1} are due to symmetric stretching frequencies of the P–O–P bridge. The observation of a strong v_s POP band is known to be the most striking feature of cyclotetraphosphate spectra, along with the presence of the $v_{as} OPO^-$ band, which indicate the cyclic structure of the $[P_4O_{12}]^{4-}$ anion. This FTIR result is consistent with X-ray diffraction data [\[5](#page-4-0)].

SEM analysis of $MnFeP₄O₁₂$

Figure 3 shows the SEM micrograph of $MnFeP₄O₁₂$ product. The whole thermal transformation phase changed

Fig. 2 FTIR spectrum of MnFeP₄O₁₂ Fig. 3 SEM micrograph of MnFeP₄O₁₂

particle shape and size of the product composed of a high agglomerate of non-uniform particles, which is not similar to those of $M_2P_4O_{12}$ (M = Mn or Fe) (Fig. [3](#page-2-0)) and $MnFeP₄O₁₂ obtained by thermal condensation of Mn_{0.5}$ $Fe_{0.5}(H₂PO₄)₂·nH₂O$ in our previous studies [\[12](#page-4-0), [16](#page-4-0), [17\]](#page-4-0) The highly agglomerate of $MnFeP₄O₁₂$ powder is possibly caused by the process of the decomposition process in acetone medium. There is strong agglomeration phenomenon among the particles of $MnFeP_4O_{12}$, which is attributed that the each other absorption exists among particles with the layered structure compound. The SEM result indicates that the grain sizes of $MnFeP₄O₁₂$ are not consistent with the crystallite sizes in the XRD analysis because the exact particle nucleation and growth mechanisms are caused.

VSM magnetometer

Magnetization curve (M–H loop) for MnFe P_4O_{12} powder obtained from room temperature VSM measurement is illustrated in Fig. 4. Magnetization did not reach saturation, even at maximum applied magnetic field in range of $\pm 10,000$ Oe, and no hysteresis was found, which indicated that the studied product is superparamagnetic [[20\]](#page-4-0). Specific saturated magnetization (M_s) value (14.09 emu/g) for the studied $MnFeP₄O₁₂$ powder [[12\]](#page-4-0) is close to that of CoFeP₄O₁₂ (14.24 emu/g)[[15\]](#page-4-0). But the superparamagnetic property for the studied compound is significantly different from the ferromagnetic properties for $Fe₂P₄O₁₂$ (85.01) emu/g) $[17]$ $[17]$ and MnFeP₄O₁₂ (13.14 emu/g) $[12]$ $[12]$ (obtained from thermal condensation of $Mn_{0.5}Fe_{0.5}(H_2PO_4)_2 \cdot nH_2O$ at 500 °C) and the diamagnetic property for $Mn_2P_4O_{12}$ [\[16](#page-4-0)]. Compared with the M_s of Fe₃O₄ bulk (92 emu/g) and Fe₃O₄ nanoparticles (in a range of 30–50 emu/g), the M_s of

Fig. 4 The specific magnetization of $MnFeP₄O₁₂$ as a function of field, measured at 20 \degree C

 $MnFeP₄O₁₂$ was lower, which might be attributed the nature of samples; crystal structure, shape, and particle size [\[21](#page-4-0)]. If Mn(II) is inserted to $Fe₂P₄O₁₂$, the magnetism would decrease significantly, since the effective metal radius of $MnFeP₄O₁₂$ was different from its core radius of $Fe₂P₄O₁₂$. This result indicates that the different magnetic property of $MnFeP_4O_{12}$ is caused by the presence of Mn ions in substitution position of Fe ions in the skeleton. This study demonstrates that the synthesized $MnFeP_4O_{12}$ is truly superparamagnetic, which is a unique feature of magnetic materials. This material may be used in modern technologies including magnetic resonance imaging contrast agents, data lifetime in high density information storage, ferrofluid technology, and magnetocaloric refrigeration [\[19–21](#page-4-0)].

Conclusions

This research has successfully achieved a simple one-step thermal synthesis of a monoclinic binary $MnFeP₄O₁₂$ in the presence of water–acetone media. FTIR, XRD, SEM, and VSM results suggested the formation of a binary manganese iron cyclotetraphosphate $MnFeP₄O₁₂$. The FTIR and XRD data confirmed the most feature of cyclic polyphosphate anion, which indicated the dominant cyclotetraphosphate of P_4O_{12} ⁴⁻ anion. The morphology and crystallite size of $MnFeP₄O₁₂$ show a high agglomerate of non-uniform particles and polycrystalline having crystallite size of 30 \pm 9 nm, as estimated by SEM and XRD, respectively. The magnetic analysis of the synthesized MnFe P_4O_{12} shows superparamagnetic property, having no hysteresis loop in the range of $-10,000$ Oe $\lt H\lt 10,000$ Oe with the specific magnetization of 14.09 emu/g at 10 kOe. This research displays that the simple, cost-effective, rapid time consumption, and environmental friendly method is necessary for elaboration of technology and academic scientist to produce the cyclotetraphosphate of transition metals, which may be useful for potentially applications as super phosphate and micronutrient fertilizers, inorganic ceramic pigment, catalyst, fuel cell material and corrosion-proof compositions.

Acknowledgements This work is financially supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE): Research Grant for New Scholar and the National Nanotechnology Center (NANOTEC) NSTDA, Ministry of Science and Technology, Thailand.

References

- 1. Hu X, Yan S, Ma L, Wan G, Hu J (2009) Powder Technol 192:27
- 2. Amri M, Zouari N, Mhiri T, Daoud A, Gravereau P (2006) J Mol Struct 782:16
- 3. Trojan M, Šulcová P (2000) Dyes Pigments 47:291
- 4. Boonchom B, Danvirutai C (2008) Ind Eng Chem Res 47:5976
- 5. Gunsser W, Fruehauf D, Rohwer K, Zimmermann A, Wiedenmann A (1989) J Solid State Chem 82:43
- 6. Trojan M, Brandová D (1985) Thermochim Acta 88:415
- 7. Durif A (2005) Solid State Sci 7:760
- 8. Trojan M, Šulcová P (2000) Thermochim Acta 343:135
- 9. Trojan M, Šulcová P (2000) J Therm Anal Calorim 60:215
- 10. Arbi K, Ben Hassen-Chehimi D, Trabelsi-Ayadi M, Silvestre JP (2000) Mater Res Bull 35:1533
- 11. Naïli H, Ettis H, Mhiri T (2006) J Alloys Compd 424:400
- 12. Boonchom B, Maensiri S, Youngme S, Danvirutai C (2009) Solid State Sci 11:485
- 13. Trojan M, Brandová D (1990) Thermochim Acta 161:11
- 14. Averbuch-Pouchat MT, Durif A (1996) Topics in phosphate Chemistry. World Scienctific, Singapore
- 15. Boonchom B, Thongkam M, Kongtaweelert S, Vittayakorn N (2009) J Alloys Compd 486:689
- 16. Boonchom B, Maensiri S, Youngme S, Danvirutai C (2008) Mater Chem Phys 109:404
- 17. Boonchom B, Maensiri S, Youngme S, Danvirutai C (2008) Ind Eng Chem Res 47:7642
- 18. Cullity BD (1977) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing, Massachusetts
- 19. Ramakrishnan V, Aruldhas G (1985) Infrared Phys 25:665
- 20. Ma H, Qi X-r, Maitani Y, Nagai T (2007) Int J Pharm 333:177
- 21. Gupta AK, Gupta M (2005) Biomaterials 26:3995